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Conversion of Continued Fractions into Power Series 

By A. J. Zajta and W. Pandikow 

Abstract. In Section 1, continued fractions of the special form 

(1) 1 Zt z2t z3t 

are considered, and a general formula is given for the coefficients of the power series 

corresponding to (1). In Section 2, the problems of programming the computation of 

coefficients are discussed. 

The continued fraction (1), or its variants, has been studied by many distinguished 

mathematicians. The problem of converting (1) into a power series has also been con- 

sidered, and a number of partial results are known. A detailed account can be found 

in Perron [1 ]. 

In this paper, we will not make use of the techniques that are generally applied 

in the theory of continued fractions. Instead, our approach employs some simple com- 

binatorial and probabilistic arguments. Nevertheless, the methods are quite elementary 

and can be understood even by those who are unfamiliar with probability theory. 

1. The conversion formula is expressed in the following 
THEOREM. Te coefficients Fn(zI, Z2, * , zn) of the power series 

00 

(2) 1 + E Fn(zll Z2, Zn) * tn) 
n=1 

associated with the continued fraction (1), have the following explicit form: 

E e n ek + ek+ 
- 

e e 
(3) E zi ~1 (eI -1 Zkk 

where the exponents ek (k = 1, 2, * * *, n) are nonnegative integers and the summa- 

tion is to be extended over all partitions of the positive integer n, with parts ek, 

n 

(4) ; ek = n. 
k=1 

The proof is carried out in several steps. First, we introduce a finite n-termed 

sequence {'y1}In of random variables yi, i = 1, 2, . . , n, defined by the foLlowing 
properties: 
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(i) yi - Oyi = integer (i, j=1, 2, * ,n), 

(ii ^1i > 'l (i=2, ---n), 

(iii) ^1i < yi-l + (i =2, * * n). 

Such sequences will be referred to as gamma sequences. The value c that is actually 

taken by the first element, 'y1, will be called the floor of the sequence. Two of these 

sequences, {'y}'n and {'y},n will be called equivalent, if 'y1 - = - = = 

- y'y. This defines an equivalence relation, under which all these gamma sequences 
(for each fixed n) fall into equivalence classes. Since every class can be represented by 
one single sequence belonging to it, we shall find it convenient to choose as each representa- 
tive gamma sequence the "reduced" sequence, that is, the one with floor c = 1. 

Reduced sequences have a simple geometric interpretation by considering random 

walks on a line with a barrier. A particle starts at the origin and takes n discrete steps 
of + 1 and n discrete steps of - 1, but never crosses the origin. We represent the walk 
graphically in the (x, y)-plane by a path joining the points (0, 0), (1, Y1), * , (i, Y), 
. . , (2n, 0). A point P(i, yi) of the path is called a point of increase if yi = yi+ 1. 
A reduced gamma sequence may then be defined as the sequence of y coordinates of 
the points of increase. 

For any reduced gamma sequence of n elements, let vk denote the number of 
those elements 'yi whose values are equal to k. Let us consider the following event: 

i 
(5) Cn(el, e2, , ei) = f I'k = ek}, 

k=l 

where j < n, ek > O and el + e2 + - - - + e1 = n. This event may occur in various 

ways; we denote by N[Cn(el, e2, * * *, e,)] the total number of instances when 

Cn(el, e2, . . , e,) occurs. The number N[Cn(el, e2, * * *, e,)] can be computed 
from a recursive formula, provided N[Cn,(el, e2, * , e11,)] is known. The event 

Cn,(el, e2, * , e-11) is related to a reduced gamma sequence of n' = n - e1 elements, 
for which the -values of variables vk. k = 1, 2, - -, j - 1, remain the same as before. 

The original gamma sequence may be obtained from the sequence of n' elements by 

adjoining e1 new elements, each having the same value j. The new elements cannot be 
inserted in an arbitrary order: by condition (iii), they can be adjoined consecutively or 

each can be adjoined immediately following an element of value j - 1. This means that 
there are exactly 

?e,_ + e, - 1) 

different possibilities, thus 

N[Cn(el, e2* , eI)] =N[Cn'(el, e2, , ef)I (ei e ), 
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or, by induction, 

ek- ?ek~ -1 
(6) N[Cn(el, e2 , e,)] = 11 (ek ek ) 

In what follows, we will assume that different possible paths of the random walk 

are equally probable. Then'the joint generating function of variables vk, k = 1,2, n, 
may be expressed as follows: 

(7 Fn (Z 1 Z21 
... Zn) 

( ) ~~~Gn(ZlIZ21 Zn) F(l ,*- ) 

where 

(8) F (z1 z2 . , zZn) = E N[Cn(e1 , e* ... *e)] ze1Ze2 * 
e 

* ;i. 

Here, zk denotes the generating function variable corresponding to Vk. The summation 

must be extended over all partitions of n into positive integers ek, i.e., 

n = e1 + e2 + - - + e, (j< n). 

The functions Fn(zl Z2' .* .. , Zn) can be computed in two different ways. On 

the one hand, by applying (6), we have 

*e n /ek-1 + ek- 1 

k=2 ek 

On the other hand, they satisfy the following convolution formula: 
n 

(I 0) Fn+ l(Zl,9 Z2, ' Zn+1) =Zl E k(Z1. Z2 ' k) Fn-k(Z2' Z 3' 
.. 

Zn-k + 1 )' 
k=O 

where we put Fo = 1. Using this formula, the functions Fn can be computed recursively. 

Proof of the Convolution Formula (10). Consider a reduced gamma sequence of 

n + 1 elements. By omitting the initial element (whose value is of course equal to 1), 

three possibilities may occur: 
(i) The new sequence is also a reduced gamma sequence. This happens if 72 = 1 

in the original sequence. 
(ii) The new sequence is a gamma sequence with floor c = 2. This happens if 

vi = 1 in the original sequence. 
(iii) In the original sequence 72 = 2 and v, > 1. Then there exists an integer k 

such that 2 < k < n, yn-k+2 = 1 and yi > 1 for 2 < i < n - k + 2. The new 

sequence breaks up into two distinct gamma sequences, {Y}ln-k +1 and {'y} + 

The first has the floor value c = 2 and the second is a reduced sequence. 

Case (i) contributes to the right-hand side of (10) by z * Fn(z , z , 

case (ii) contributes by z1 - Fn(z2, Z3, * * Zn + 1) and, finally, case (iii) contributes 

by 
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n-1 

Zi E Fk(Z1, Z2, ... , Zk) Fn-k(Z2 Z3, zZn-k+1)- 
k=1 

The Generating Function for the Functions Fn. This is defined by the infinite 
power series: 

n1~~~~~~~~ 

(11) = 1 ? F(z z2, * , *znJ) t,* etc. 
n=1 

Using similar notation, we introduce further generating functions ak(t), k 2, 3, e.g., 
00 

)2(t) = 1 + , Fn(Z2, Z3)t? Zn + )z- tn, 

(12) n=1 

tz1~ ~ ~ ~ ~~~~.t 

03(t) = 1 + =Fn(Z3/ Z4 z t.( * Zn+2) i geneetc. 
n-1 

Now, let us form the Cauchy product of the power series of j 1(t) and 02 (t) and apply 
(IO). We have 

01(t) * 02(t) =1+ 
I 

sF2(zll Z2) * t + 
I 

JF3(zl, Z2, Z3)t2 + 

1 z1 z2t z 

= 1 --(t) 1) 

whence 0 1 (t) = 1/(1 - z 1 tO 2 (t)), or in general, 

(13)~~~~~~~ 1 ZktOk + 1(t) 

Using this formula repeatedly, we have the representation of 0 1(t) in a continued fraction: 

01(t)=X-X -X -[ --. 
Hence the theorem. 

COROLLARY. The total number of different possible paths of random walks 
which were described earlier in this paper, is equal to (1/(n + 1)) (2 n). 

Proof Clearly, the total number of paths is given by Fn(l, 1, * , 1) and this 

can be computed as the coefficient of t' in the power series associated with 01 (t) when 

Zk = 1 for all k. But then Ok(t) = ql (t) for all k and hence by (13) 

t 
_ 

q2 (t)- ql(t) + 1 = 0. 

Thus 

01 (t) El - t0 n+1 (- 4t)n 2t 2tn= n I 

= o 1 (2n)tn 

and so the Corollary follows. 
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2. Computationally, two different cases arise in handling the problem of the title; 
that is, the technique of the conversion depends on whether the variables zll Z2, ... * 
Zn . * * are given as functional expressions of n or they are specified as numerical values, 
In what follows, we will treat the first case. Our results will then hold under the con- 
dition laid down in the first case. In the second case, the computation is much simpler 
because the variables zn have been assigned numerical values at the outset. 

The coefficients Fn in (2) can be computed by applying either formula (3) or (10). 
We consider the two methods separately. 

1. The coefficients Fn are computed by using (3). If, for a partition of n: 

ek=0 and ek+l>O 

for some k < n - 1, then 

(ek +ek+l - 1/ek+l 1 

1 1=~~~0. 
ek+l / ek+l / 

Thus, these partitions do not contribute to Fn and can be discarded. We call the 
remaining partitions relevant. These are generated by an algorithm defined by the fol- 

lowing flow-chart, where the variable "I" denotes the number of nonzero elements in 
the partition. 

START 

7 
Initial partition: 

e, = n, e2 en = 0 

11 u 

I e ? 1 I? 

rNO YES 

|e, -1 )e, / 

4, ~~~~~~STOP 
e, + -- + e, r ...i 

n - r e | 

Next partition is: 

ep, e2, , el 
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The number of relevant partitions may be denoted by Pn. Obviously, Pn = 1 + 
P1 + - - - + Pn_1 and therefore Pn = 2n-1. For each relevant partition, the expression 

k(2 ( ek 4 

is computed and their values are accumulated to obtain Fn. With n increased by 1, the 
number of partitions doubles. The average number of factors in (3') increases too, so 
the computation time becomes slightly more than double. This limits the actual com- 
putation of the Fn, while there is no memory problem. Carrying out the computation 
for some numerical examples, the computation of F1 to F1 8 on an IBM 1130 took 

approximately 80 minutes. 
2. Formula (10) can be employed to compute the Fn recursively. Each Fn is a 

polynomial in the Zk 's and is represented in a segment of a one-dimensional array. The 
end and beginning of this segment are indicated by pointer addresses. Each Fn is a sum 
of terms having the following form: 

C- z 2, * Ze2 ... zen 

Such a term is represented by writing the constant C in the first word and the expon- 
ents ek into the following words. To save memory space, zero-exponents at the end of 

a term may be omitted and the end of each term is then indicated by assigning a neg- 
ative sign to the last exponent. Multiplication of two terms is performed as a multipli- 
cation of the coefficients and addition of the exponents. The transition from 

Fk(Zl 5... , zk) to Fk((Z2 ... z5 Zk+) is carried out by shifting the exponents in all 

terms by one to the right and introducing a zero after the coefficient C. During the 

multiplication of Fk and Fnfk, the product of two terms has to be checked, if it exists 

already among the terms of Fn + 1. If this is the case, the coefficient of the product is 

added to the coefficient of that term; otherwise a new term is introduced. 

The difficulty of this method lies in the need of memory space. In order to 

compute Fn+ 1 , all the F1, * , F, must be available. The table below shows the 

memory locations for F1 to Fg. 

Fi Memory locations Fi Memory locations 

F1 1-2 F6 112-255 

F2 3-7 F7 256-575 

F3 8-19 F8 576-1279 

F4 20-47 Fg 1280-2815 

F5 48-111 
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